library(ggplot2)
library(hrbrthemes)
library(corrplot)
data <- read.csv("fig2abc_logRPM_batch1.csv", header = TRUE,sep=',',encoding="utf-8",stringsAsFactors=F)
matrix=cor(data[2:13])
jpeg(file="fig_a.jpg", width=5, height=5, units="in", res=800)
corrplot(corr=matrix,method = "color",tl.col="black",addCoef.col = "white",number.cex = 0.8,order = "AOE",tl.cex=1.3,cl.pos="n")
dev.off()
library(ggplot2)
library(hrbrthemes)
library(corrplot)
data <- read.csv("fig2abc_logRPM_batch1.csv", header = TRUE,sep=',',encoding="utf-8",stringsAsFactors=F)
matrix=cor(data[14:19])
jpeg(file="fig_b.jpg", width=5, height=5, units="in", res=800)
corrplot(corr=matrix,method = "color",tl.col="black",number.cex = 1.6,addCoef.col = "white",order = "AOE",tl.cex=1.3,cl.pos="n")
dev.off()
library(ggplot2)
library(hrbrthemes)
library(corrplot)
data <- read.csv("fig2abc_logRPM_batch1.csv", header = TRUE,sep=',',encoding="utf-8",stringsAsFactors=F)
matrix=cor(data[20:25])
jpeg(file="fig_c.jpg", width=5, height=5, units="in", res=800)
corrplot(corr=matrix,method = "color",tl.col="black",addCoef.col = "white",order = "AOE",number.cex = 1.4,tl.cex=1.3,cl.pos="n")
dev.off()
library(ggplot2)
data <- read.csv("fig1b-1-intron_ratio.csv", header = TRUE,sep=',',encoding="utf-8")
names(data)=c("x","y")
data$x=c("intron0_1","intron0_2","intron0_3","intron2_1","intron2_2","intron2_3","intron6_1","intron6_2","intron6_3","intron12_1","intron12_2","intron12_3",
"total0_1","total0_2","total0_3","total12_1","total12_2","total12_3",
"mRNA0_1","mRNA0_2","mRNA0_3","mRNA12_1","mRNA12_2","mRNA12_3",
"batch1_mock1","batch1_mock2","batch1_mock3","batch1__intron24_1","batch1__intron24_2","batch1__intron24_3","batch1_lnc0","batch1_lnc24","batch1_mRNA0","batch1_mRNA24")
data$group=c(1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4)
data$group=as.character(data$group)
data1=data[1:24,]
colors1<-c("#EE6666","#FFA500","#5470c6")
plot=ggplot(data1, aes(factor(x, level=x), y,group=1,colour=group,fill=group)) +
scale_fill_manual(values = colors1)+
scale_color_manual(values = colors1)+
geom_line(size = 1.5,colour ="#6495ED",lty=5) +
geom_point(shape = 24, size =5) +
theme_bw() +
ylab("Percent of reads in the Intron regions") +
xlab("Sample name") +
theme(panel.border=element_blank(),
axis.line=element_line(size=0.5,colour="black"),
legend.position="n",
axis.title.y= element_text(vjust = 2,hjust = 1),
axis.text.y=element_text(size=18),
axis.title=element_text(size=18),
axis.text.x = element_text(size=18,vjust = 1, hjust = 1,angle = 65),
panel.grid.minor.x=element_blank(),
panel.grid.minor.y=element_blank())
jpeg(file="fig_d.jpg", width=10, height=5, units="in", res=800)
plot
dev.off()
library(ggplot2)
library(dplyr)
library(forcats)
data <- read.csv("section2_coverage_20220110.csv", header = TRUE,sep=',',encoding="utf-8")
colors<-c("#EE6666","#EE6666","#EE6666","#DA70D5","#DA70D5","#DA70D5","#fac858","#fac858","#fac858","#73c0de","#73c0de","#73c0de","#FF1493","#FF1493","#FF1493","#fc8452","#fc8452","#fc8452","#FF0000","#FF0000","#FF0000","#1E90FF","#1E90FF","#1E90FF")
plot=data %>%
mutate(class = fct_reorder(sampleID, coverageDepth)) %>%
ggplot( aes(x=factor(sampleID, level=c("intron0_1","intron0_2","intron0_3","intron2_1","intron2_2","intron2_3","intron6_1","intron6_2","intron6_3","intron12_1","intron12_2","intron12_3","lnc0_1","lnc0_2","lnc0_3","lnc12_1","lnc12_2","lnc12_3","mRNA0_1","mRNA0_2","mRNA0_3","mRNA12_1","mRNA12_2","mRNA12_3")), y=coverageDepth, fill=sampleID)) +
geom_boxplot() +
scale_fill_manual(values = colors)+
coord_cartesian(ylim = c(0,30000))+
scale_y_continuous(labels = scales::comma)+
theme_bw() +
scale_x_discrete(labels= c("intron0_1","intron0_2","intron0_3","intron2_1","intron2_2","intron2_3","intron6_1","intron6_2","intron6_3","intron12_1","intron12_2","intron12_3","total0_1","total0_2","total0_3","total12_1","total12_2","total12_3","mRNA0_1","mRNA0_2","mRNA0_3","mRNA12_1","mRNA12_2","mRNA12_3"))+
theme(legend.position="none")+
ylab("CoverageDepth") +
xlab("SampleID") +
theme(legend.margin=margin(0,0,0,3),
axis.title.y = element_text(vjust = 2),
axis.text.y=element_text(size=18),
axis.title=element_text(size=18),
axis.text.x = element_text(size=18,vjust = 1, hjust = 1, angle = 60),
panel.grid.minor.x=element_blank(),
panel.grid.minor.y=element_blank())
jpeg(file="fig_e.jpg", width=12, height=5, units="in", res=500)
plot
dev.off()
library(readxl)
library(ggplot2)
library(tidyr)
raw <- read.csv("fig2_sisVenn.csv", header = TRUE,sep=',',encoding="utf-8")
raw=raw[,3:26]
df = data.frame(x=names(raw))
vec=c()
for (i in names(raw))
{
vec=c(vec,nrow(raw[which(raw[i]>10&raw[i]<=50),]))
}
df['>10']=vec
vec=c()
for (i in names(raw))
{
vec=c(vec,nrow(raw[which(raw[i]>50&raw[i]<=100),]))
}
df['>50']=vec
vec=c()
for (i in names(raw))
{
vec=c(vec,nrow(raw[which(raw[i]>100&raw[i]<=1000),]))
}
df['>100']=vec
vec=c()
for (i in names(raw))
{
vec=c(vec,nrow(raw[which(raw[i]>100&raw[i]<=1000),]))
}
df['>1000']=vec
test1 <- gather(df, E1, E2, -x)
test1$E1 = factor(test1$E1 , levels=c('>1000','>100','>50','>10'))
test1$x = factor(test1$x , levels=c("intron0_1","intron0_2","intron0_3","intron2_1","intron2_2","intron2_3","intron6_1","intron6_2","intron6_3","intron12_1","intron12_2","intron12_3","lnc0_1","lnc0_2","lnc0_3","lnc12_1","lnc12_2","lnc12_3","mRNA0_1","mRNA0_2","mRNA0_3","mRNA12_1","mRNA12_2","mRNA12_3"))
p=ggplot(test1,aes(x = x, y = E2, fill = E1)) +
geom_bar(stat = "identity",position="stack") +
scale_fill_manual(values = c("#DA70D5","#73c0de","#FAC858","#EE6666"))+
labs( x = NULL, y = NULL,fill = "number")+
theme_bw() +
xlab("Sample name")+
ylab("Number")+
scale_x_discrete(labels= c("intron0_1","intron0_2","intron0_3","intron2_1","intron2_2","intron2_3","intron6_1","intron6_2","intron6_3","intron12_1","intron12_2","intron12_3","total0_1","total0_2","total0_3","total12_1","total12_2","total12_3","mRNA0_1","mRNA0_2","mRNA0_3","mRNA12_1","mRNA12_2","mRNA12_3"))+
theme(panel.grid=element_blank(),panel.border=element_blank(),axis.line=element_line(size=0.5,colour="black")) +
theme(axis.title=element_text(size=18),axis.text.y=element_text(size=18),axis.text.x = element_text(size=18,vjust = 1, hjust = 1, angle = 65),panel.grid.minor.x=element_blank(),panel.grid.minor.y=element_blank())+
theme(legend.text=element_text(size=18),legend.title=element_text(size=18) )
jpeg(file="fig_f.jpg", width=10, height=5, units="in", res=500)
p
dev.off()
library(VennDiagram)
#fig1
data <- read.csv("fig2a_0h_venn.csv", header = TRUE,sep=',',encoding="utf-8",stringsAsFactors=F)
cap=data.frame(data$ID[data$cap>0])
names(cap)<-c("cap")
lnc=data.frame(data$ID[data$lnc>0])
names(lnc)<-c("lnc")
mRNA=data.frame(data$ID[data$mRNA>0])
names(mRNA)<-c("mRNA")
venn.plot1 =venn.diagram(
x = list(cap$cap,lnc$lnc,mRNA$mRNA),
filename=NULL,
alpha=c(0.5,0.5,0.7),
cex=2.2,
cat.cex = 2.2,
fontface = "bold",
cat.fontface = "bold",
fontfamily = "Arial",
cat.fontfamily = "Arial",
fill=c( "red", "blue", "orange"),
cat.pos = c(-5,5,5),
cat.dist = c(0.09,0.08,0.03),
margin = 0.01,
category = c("capture", "total", "mRNA"))
jpeg(file="fig_g1.jpg", width=5, height=5, units="in", res=500)
grid.draw(venn.plot1)
dev.off()
#fig2
data <- read.csv("fig2a_12h_venn.csv", header = TRUE,sep=',',encoding="utf-8",stringsAsFactors=F)
cap=data.frame(data$ID[data$cap>0])
names(cap)<-c("cap")
lnc=data.frame(data$ID[data$lnc>0])
names(lnc)<-c("lnc")
mRNA=data.frame(data$ID[data$mRNA>0])
names(mRNA)<-c("mRNA")
venn.plot1 =venn.diagram(
x = list(cap$cap,lnc$lnc,mRNA$mRNA),
filename=NULL,
alpha=c(0.5,0.5,0.7),
cex=2.2,
cat.cex = 2.2,
fontface = "bold",
cat.fontface = "bold",
fontfamily = "Arial",
cat.fontfamily = "Arial",
fill=c( "red", "blue", "orange"),
cat.pos = c(0,0,0),
cat.dist = c(0.08,0.08,0.03),
margin = 0.01,
category = c("capture", "total", "mRNA"))
jpeg(file="fig_g2.jpg", width=5, height=5, units="in", res=500)
grid.draw(venn.plot1)
dev.off()
library(ggplot2)
data <- read.csv("fig2c_2.csv", header = TRUE,sep=',',encoding="utf-8")
names(data)<-c("x","y")
data$x= factor(data$x , levels=data$x)
data$group=c(1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4)
data$group=as.character(data$group)
data1=data[1:24,]
colors1<-c("#EE6666","#FFA500","#5470c6")
plot=ggplot(data1, aes(x, y,group=1,colour=group,fill=group)) +
scale_fill_manual(values = colors1)+
scale_color_manual(values = colors1)+
geom_line(size = 1.5,colour ="#6495ED",lty=5) +
geom_point(shape = 24, size =5) +
theme_bw() +
theme(legend.position="none")+
ylab("Number of splicing junctions") + xlab("Sample name") +
theme(panel.border=element_blank(),
axis.line=element_line(size=0.5,colour="black"),
axis.text.y=element_text(size=18),
axis.title=element_text(size=18),
axis.text.x = element_text(size=18,vjust = 1, hjust = 1, angle = 65),
panel.grid.minor.x=element_blank(),
panel.grid.minor.y=element_blank())
jpeg(file="fig_h.jpg", width=10, height=5, units="in", res=800)
plot
dev.off()
library(VennDiagram)
data <- read.csv("fig2_junction_venn.csv", header = TRUE,sep=',',encoding="utf-8",stringsAsFactors=F)
intronCapture=data.frame(data$x[data$intronCapture>0])
names(intronCapture)<-c("intronCapture")
lnc=data.frame(data$x[data$lnc>0])
names(lnc)<-c("lnc")
mRNA=data.frame(data$x[data$mRNA>0])
names(mRNA)<-c("mRNA")
venn.plot1 =venn.diagram(
x = list(intronCapture$intronCapture,lnc$lnc,mRNA$mRNA),
filename=NULL,
alpha=c(0.5,0.7,0.7),
cex=2.2,
cat.cex = 2.2,
fontface = "bold",
cat.fontface = "bold",
fontfamily = "Arial",
cat.fontfamily = "Arial",
fill=c( "red", "#4169E1", "yellow"),
cat.pos = c(-55,0,40),
cat.dist = c(0.06,-0.07,-0.1),
margin = 0.01,
category = c("intronCapture", "total", "mRNA"))
jpeg(file="fig_i.jpg", width=5, height=5, units="in", res=500)
grid.draw(venn.plot1)
dev.off()