library(VennDiagram)
data1 <- read.csv("sis_diff_0h-2h.csv", header = TRUE,sep=',',encoding="utf-8",stringsAsFactors=F)
data1=data.frame(data1[,2])
names(data1)<-c("y")
data2 <- read.csv("sis_diff_0h-6h.csv", header = TRUE,sep=',',encoding="utf-8",stringsAsFactors=F)
data2=data.frame(data2[,2])
names(data2)<-c("y")
data3 <- read.csv("sis_diff_0h-12h.csv", header = TRUE,sep=',',encoding="utf-8",stringsAsFactors=F)
data3=data.frame(data3[,2])
names(data3)<-c("y")
venn.plot1 =venn.diagram(
x = list(data1$y,data2$y,data3$y),
filename=NULL,
cex=2.2,
cat.cex = 2.2,
fontface = "bold",
cat.fontface = "bold",
fontfamily = "Arial",
cat.fontfamily = "Arial",
fill=c( "red", "yellow", "blue"),
margin = 0.05,
cat.pos = c(-20,20,0),
cat.dist = c(0.07,0.07,-0.45),
category = c("0h vs 2h", "0h vs 6h", "0h vs 12h"))
jpeg(file="fig_a.jpg", width=5, height=5, units="in", res=500)
grid.draw(venn.plot1)
dev.off()
library(dplyr)
library(viridis)
library(hrbrthemes)
library(ggplot2)
library(reshape2)
library(forcats)
data <- read.csv("GO_0h_2h.csv", header = TRUE,sep=',',encoding="utf-8")
data=data[order(data$Count),]
p <- data %>%
ggplot( aes(x=factor(Term, level=Term), y=Count)) +
geom_bar(stat="identity", fill=c("#37a2da","#fd666d"),width=.4) +
geom_text(aes(label= Count),vjust=0.5,hjust=-0.3,size=7)+
coord_flip() +
ylab("Gene count") +
xlab("") +
ylim(0,13)+
theme_bw()+
theme(panel.border = element_rect(fill=NA,color="black", size=1, linetype="solid"))+
theme(plot.margin = unit(c(0.5, 1.5, 0, -0.5), "lines"),
axis.text.y=element_text(size=20),
axis.text.x = element_text(size=20),
axis.title.y=element_text(size=20),
axis.title.x = element_text(size=20),
panel.grid.minor.x=element_blank(),
panel.grid.minor.y=element_blank())
jpeg(file="fig_b.jpg", width=7, height=5, units="in", res=500)
p
dev.off()
library(dplyr)
library(viridis)
library(hrbrthemes)
library(ggplot2)
library(reshape2)
library(forcats)
data <- read.csv("GO_0h_12h.csv", header = TRUE,sep=',',encoding="utf-8")
data=data[order(data$Count),]
p <- data %>%
ggplot( aes(x=factor(Term, level=Term), y=Count)) +
geom_bar(stat="identity", fill=c("#5470c6","#91cc75","#fac858","#73c0de","#3ba272","#fc8452","#9a60b4","#ea7ccc","#FF1493","#1E90FF"),width=.8) +
geom_text(aes(label= Count),vjust=0.5,hjust=-0.3,size=7)+
coord_flip() +
ylab("Gene count") +
xlab("") +
ylim(0,22)+
theme_bw()+
theme(panel.border = element_rect(fill=NA,color="black", size=1, linetype="solid"))+
theme(plot.margin = unit(c(0.5, 1.5, 0, -0.5), "lines"),
axis.text.y=element_text(size=20),
axis.text.x = element_text(size=20),
axis.title.y=element_text(size=20),
axis.title.x = element_text(size=20),
panel.grid.minor.x=element_blank(),
panel.grid.minor.y=element_blank())
jpeg(file="fig_c.jpg", width=8, height=5, units="in", res=500)
p
dev.off()
library(dplyr)
library(viridis)
library(hrbrthemes)
library(ggplot2)
library(reshape2)
library(TCseq)
raw <- read.csv("clusterData_raw.csv", header = TRUE,sep=',',encoding="utf-8")
a=(raw$intron0_1+raw$intron0_2+raw$intron0_3)/3
b=(raw$intron2_1+raw$intron2_2+raw$intron2_3)/3
c=(raw$intron6_1+raw$intron6_2+raw$intron6_3)/3
d=(raw$intron12_1+raw$intron12_2+raw$intron12_3)/3
raw$a=a
raw$b=b
raw$c=c
raw$d=d
raw=as.matrix(raw)
data=apply(raw[,21:24],2,as.numeric)
rownames(data)=raw[,1]
colnames(data)=c("0hpi","2hpi","6hpi","12hpi")
wssplot <- function(data,nc=15,seed=1234)
{
wss <- (nrow(data)-1)*sum(apply(data,2,var))
for (i in 2:nc) {
set.seed(seed)
wss[i] <- sum(kmeans(data,centers = i)$withinss)
}
plot(1:nc,wss,type = "b",xlab = "Number of Clusters",ylab = "Within groups Sum of Squares")
}
wssplot(data)
set.seed(123)
clust_res <- timeclust(data, algo = 'cm', k = 6, standardize = TRUE)
p <- timeclustplot(clust_res, cols =2,axis.line.size = 0.6, axis.title.size = 24, axis.text.size = 26, title.size = 24, legend.title.size = 24, legend.text.size = 26)
jpeg(file="fig_d_cluster2.jpg", width=8, height=4, units="in", res=500)
p[2]
dev.off()
jpeg(file="fig_d_cluster4.jpg", width=8, height=4, units="in", res=500)
p[4]
dev.off()
jpeg(file="fig_d_cluster5.jpg", width=8, height=4, units="in", res=500)
p[5]
dev.off()